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Abstract. Detection of salient object regions is useful for many vi-
sion tasks. Recently, a variety of saliency detection models have been
proposed. They often behave differently over an individual image, and
these saliency detection results often complement each other. To make
full use of the advantages of the existing saliency detection methods, in
this paper, we propose a salience learning model which combines various
saliency detection methods such that the aggregation result outperforms
each individual one. In our model, we first obtain several saliency maps
by different saliency detection methods. The background regions of each
saliency map usually lie in a low-dimensional subspace as most of them
tend to have lower salience values, while the object regions that deviating
from this subspace can be considered as sparse noises. So, an individual
saliency map can be represented as a low rank matrix plus a sparse
matrix. We aim at learning a unified sparse matrix that represents the
salient regions using these obtained individual saliency maps. The sparse
matrix can be inferred by conducting low rank matrix recovery using the
robust principal component analysis technique. Experiments show that
our model consistently outperforms each individual saliency detection
approach and state-of-the-art methods.

1 Introduction

Humans have a remarkable ability to effortlessly judge the importance of im-
age pixels or regions in real time, and pay more attention to those important
and informative parts. Detection of such salient pixels or regions of an image
automatically is an active research area in recent decades. There are two major
research directions of visual attention modeling, including eye fixation predic-
tion and salient object detection. The former is to identify a few human fixation
locations on natural images, which is helpful for many high-level vision tasks.
The later focuses on uniformly highlighting entire salient object regions, thus
benefiting wide applications in computer vision like: salient object segmentation
[1, 3, 2], object based image retrieval [4], content-aware image resizing [5], auto-
matic image cropping [6], and adaptive image compression [7]. In this paper, we
focus on the salient object detection.

Although a rich literature has been appeared on image saliency analysis [8–13,
15–20], a few commonly noticeable and critically influencing issues still endure.
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They are related to complexity of patterns and behave differently in natural
images, since different saliency models are based on variety of theories and tech-
niques. The saliency maps obtained by different methods vary remarkably from
each other. Each of them has its advantages and disadvantages. Fig. 1 shows a
few results from several previous representative salient object detection meth-
ods. We can clearly see that each method just works well for some parts of an
image. As shown in Fig. 1(b-c), some objects boundaries are well-defined, but
most of the salient regions do not stand out. Differently, the detection results
shown in Fig. 1(d-f) well highlight most of the object regions, but some back-
ground regions are also detected as salient regions shown in white. As shown
in the ‘Board’ image of Fig. 1(d), the trees around the board also stand out
simultaneously with the salient board regions. More interestingly, it is observed
that these results can complement each other in general. This is mainly because
each saliency detection method often captures some aspects of the visual infor-
mation from different perspectives (e.g. local/ global contrast, sparsity or spatial
distribution). This motivates us to combine different saliency maps to get better
results. Specifically, for a given image, we can first obtain several saliency maps
by different saliency detection methods, and then try to find a way to utilize the
advantages of these methods and meanwhile suppress the disadvantages of them,
aiming to effectively combine these saliency maps.

(a) Image (b) CA (c) FT (d) RC (e) LR (f) PCAS (g) Ours

Fig. 1. Visual salience learning. Individual salience maps, such as CA[10], FT[9],
RC[11], LR[15], PCAS[20] often complement each other. Visual salience learning can
effectively combine their results and perform better than each of them.

Although there are several approaches attempting to integrate different saliency
maps to detect saliency [12][13], they might not make use of the advantages and
disadvantages of these saliency maps for each input image. A. Borji et al. [12]
presented a simple combination model for saliency detection using pre-defined
functions. It takes each individual model all equal in the integration process.
However, this strategy may not fully capture the advantages of each individual
saliency detection method. L. Mai et al. [13] proposed an approach for saliency
aggregation using a conditional random field framework. Sometimes, this method
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can better determine the contribution for each input saliency map in the aggre-
gation, as it considers the performance gaps among different saliency analysis
methods. Unfortunately, the cross-information among individual saliency maps
is not well utilized in the aggregation process. It is often difficult for such models
that are use linear or nonlinear fusion strategy to produce reliable results.

For the saliency maps obtained by various saliency detection methods, if
we first segment the original image into many homogeneous sub-regions, the
background regions of each saliency map usually lie in a low-dimensional sub-
space since most of them tend to have the lower salience values shown in black,
while the object regions that deviating from this subspace can be represented
by a sparse matrix. Inspired by this, we are dedicated to learning a unified
sparse matrix that represents the salient regions using these obtained individual
saliency maps. And our saliency detection can be cast as a sparse matrix pursuit
problem. Our idea differs from the previous saliency detection models which also
based on the theory of low-rank-sparsity matrix decomposition [21][22][15] in its
motivation. In [21][22][15], the saliency map is inferred by integrating multiple
types of features of the given image. However, in their models, for many complex
natural images, the assumptions that the background matrix has a low rank and
the salient regions correspond to a sparse matrix may not hold.

In our method, we first decompose a given image into many homogeneous
sub-regions by an image segmentation technology, each of which is called a super-
pixel. Then we conduct various saliency detection methods and obtain the same
number of saliency maps. Each saliency map is represented by a vector, where
each element of the vector corresponds to the mean of the saliency value of that
super-pixel. Arranging these vectors forms a combinational matrix representa-
tion of these saliency maps. The sparse matrix indicating the salient regions can
be well inferred by conducting low-rank matrix recovery using the robust prin-
cipal component analysis (RPCA) technique [23]. Since the cross-information
among individual saliency maps has been well considered, such a sparsity pur-
suit scheme can produce more accurate and reliable results than the saliency
aggregation models of using simple linear or nonlinear fusing strategy with fixed
coefficients [12][13], and also can outperform the performance of each individual
saliency detection method.

Compared with existing methods, the contributions of our method mainly
include:

• Our proposed approach considers the cross-information among individual
saliency detection methods, it performs better than these methods which com-
bine saliency maps through weighted averaging.

• In our proposed approach, the contribution of each saliency map is not
equally constant, but learned adaptive to each image.

• Our proposed approach treats the saliency detection as a sparsity pur-
suit problem based on the theory of low rank matrix recovery. It provides an
interesting perspective for visual saliency learning framework.
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2 Related Work

To serve as the baseline of our approach, a set of saliency detection methods need
to be chosen to produce individual saliency maps. Today, there are many saliency
analysis methods based on variety of techniques with interesting performance.
In the following we give a review of saliency detection methods that are related
to our approach.

The major difference among these saliency detection approaches is the strat-
egy for measure saliency. In recent years, a growing number of saliency detection
methods have been proposed. Here, we classify existing saliency object detection
models into three categories: contrast based methods, spatial distribution based
methods and sparsity based methods. Note that, these three kinds of methods
are not completely disjoint, they are interspersed with each other to some extent.

As a pioneer, Itti et al. [24] use center-surround differences across multi-scale
image features to detect image saliency. Hereafter, many contrast based models
have been proposed to extend this approach, including the fuzzy growth model
(MZ) by Ma and Zhang [25], and graph based visual saliency model (GB) by
Harel et al. [26]. Later, a method presented by Achanta et al. (AC) [8] which de-
termine salient regions using low level features of color and luminance. Achanta
et al. [9] implemented a frequency-tuned method (FT) to define pixel saliency
based on the color difference from the average color of entire image. Recently,
Margolin et al. [20] use PCA (PCAS) to represent the set of patches of an image
and use this representation to determine patch distinctness. Cheng et al. [11] con-
sider the global region contrast differences with respect to the whole image and
spatial coherence across the regions to define saliency map (RC). However, since
spatial distribution among patches is not formulated, RC cannot well handle
images with cluttered and textured backgrounds. To deal with the images which
contain small-scale structures, Yan et al. [17] presented a hierarchical saliency
model (HS) that infers saliency values from multiple image layers. These contrast
based methods have their difficulty in distinguishing among similar saliency cues
(e.g. color, structure) in both foreground and background regions. Besides, they
generally fail when the images are with large-scale objects.

Spatial distribution based methods are generally built on two common priors
which come from the basic rule of photographic composition. The first one is
the object prior which considers that salient regions are likely to appear at the
center of an image. The second one is the background prior which assumes that
the image boundary is mostly background. Based on these two priors there are
many saliency detection models have been presented, e.g, graph-based manifold
ranking model [33], absorbing markov chain model [18] and dense and sparse re-
construction model [16]. Spatial distribution based models have achieved success
in many images, but still have certain limitations. Typically, if the assumption of
the object prior or background prior is not hold, it nevertheless provides useful
visual information which can be utilized to guide the salience detection.

Sparsity based models are performed under the assumption that in a cer-
tain feature space the salient region is sparse compared with the background
regions. SR [27] proposed by Hou and Zhang is a typical sparsity based model
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which measures saliency via spectral residual in the frequency domain. Later,
several low-rank-sparsity matrix decomposition theory based models have been
proposed, which infer saliency map by integrating multiple types of features of
the given image [21, 22, 15, 19].

Although still each year many new saliency models are introduced, there is
a large gap between models and human performance in detecting salient object
regions in free-viewing of natural scenes. It is nice to see that these models often
vary over an individual image and complement each other. In our model, we
choose newly published methods HS [17], PCAS [20], GC [32], DS [16], AMC [18],
GBMR [33] and SLR [19] to produce individual saliency maps for our saliency
aggregation. Note that as more and more saliency detection models have been
developed recently, more existing and forthcoming saliency models can also used
in our individual initial saliency maps production.

It should be noted that the idea of employing the low-rank matrix recovery
for saliency detection is not new [22][15]. In [22], an image is partitioned into
non-overlapping patches of size p × q pixels, each of which is represented by a
feature vector. These feature vectors are then arranged to form a multiple-feature
matrix for low rank matrix recovery. However, when the object of the image
is not small enough, the noises expected to indicate saliency will no longer be
sparse. This violates the underlying assumption of the model. Different from this
method, the approach proposed in [15] represents the image in another way. It
incorporated image segmentation into the saliency detection and partitioned an
image into many small regions after multi-scale feature extraction. To ensure the
validity of the low rank recovery model, they modulated the image features with
a learnt transform matrix. However, the learnt transform matrix is somewhat
biased toward the training data set, it suffers from limited adaptability.

Differing from these approaches, we select various saliency maps to form
a matrix for low rank matrix recovery. After the over-segmentation, the input
image is divided into many regions. Thus, for each saliency map, the correspond-
ing background regions can be represented by a low rank matrix, and the salient
regions can be indicated by a sparse matrix. We use the matrix combined by
various saliency maps to conduct the low rank recovery. By this way, our model
can adaptively make use of the advantages of individual saliency maps and yield
a satisfactory result even without higher-level prior.

3 Salience Learning by Low Rank Affinity Pursuit

Our method starts from running a set of d saliency detection methods on a given
image I, and produces d saliency maps, {Sk||1 ≤ k ≤ d}, one for each method.
Each element Sk(p) in a saliency map is the salience value of the pixel p. In each
saliency map, the values of pixels are represented in gray and normalized in the
range [0, 1]. Our goal is to take these d salience maps as original input and learn
a final salience map S. In this section, we describe details of our learning model
of salience maps aggregation.
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3.1 Problem Formulation

In this subsection, we will describe the formulation of our problem in detail. And
Fig.2 gives an illustration for easy understanding of our procedure.
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Fig. 2. Illustration of our problem formulation.

In order to get an effective representation for a saliency map, we use super-
pixels other than image pixels or patches with the same size as basic image
elements. We choose mean-shift clustering [28] to produce our required image
segmentation. Each sub-region is called a super-pixel. With suitable parameters
selection, the image background also contains multiple super-pixels even if it
is visually homogeneous. See the first row of Fig.2 for an example, the origi-
nal is divided into a set of super-pixels {Pi}i=1,...,n, where n is the number of
super-pixels. Combining the over-segmentation result, saliency map Sk can be
represented by a n-dimensional vector Xk = [x1k, x2k, . . . , xnk]

T
, the i− th ele-

ment of the vector corresponds to the mean of the saliency values of super-pixel
Pi. By arranging these vectors into a matrix, we get the combinational matrix
representation of all the saliency maps X = [X1, X2, . . . , Xd]. X ∈ Rn×d, where
each Xi corresponds to the i− th saliency map, d denotes the number of saliency
maps. Then, our goal is to find an assignment function S(Pi) ∈ [0, 1]. Function
S(Pi) is referred to as the final saliency map, where the value of S(Pi) represents
the probability of super-pixel Pi belonging to the salient objects.

3.2 Saliency Aggregation using Robust PCA

Our task described by the above formulation is to find a criterion for measuring
and detecting the final saliency which can effectively utilize the advantages of
individual saliency methods and meanwhile suppress the disadvantages of them.
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For the previous saliency detection methods, the term “sparsity” is an im-
portant perspective for detecting salient objects. It is in essence similar to the
contrast (another point of view for saliency), since the pixels or regions differ-
ent from their surroundings usually receive higher response on contrast-based
features (e.g., color or texture). From this perspective, the salient regions are
different from the background regions are mostly sparse. Then, an image can be
considered as a combination of a background part with a salient part. In other
words, the image I can be decomposed into two parts in a certain feature space:

∅(I) = A+E, (1)

where ∅ is a feature transformation, A and E denote matrices of the background
part and the salient part, respectively. Although most of the existing saliency
detection methods are based on the contrast or sparsity criterion, they often
perform differently and complement each other (see Fig.1 for example). There-
fore, we design a ‘powerful alliances’ strategy to achieve a satisfactory saliency
aggregation.

Since each saliency detection method is a nonlinear transformation from the
given image to the saliency map, then X can be treated as a feature repre-
sentation of the image I in the saliency feature space (to distinguish this new
feature space from the traditional feature space, e.g., RGB color space, we called
the feature space composed by various saliency maps as saliency feature space).
Naturally, Eq.1 can be rewritten as:

X = A+E, (2)

Eq.2 is a severely under-constrained problem. Theoretically speaking, it is
almost impossible to find A and E without any restrictions information. In
other words, without imposing any restrictions to Eq. 2, there are an infinite
number of solutions with regard to A and E. To seek a suitable solution that
is benefit for our saliency detection, some criteria for characterizing matrices A
and E are needed. To this end, we here consider two basic principles. On the
one hand, the background regions usually lie in a low dimensional subspace so
that they can be represented as a low rank matrix. This suggests that matrix
A may have the property of low rankness. On the other hand, in a saliency
map, only a small portion of super-pixels are salient regions even when the
object size is large, since salient objects usually have characteristic and spatial
coherence. So, we can regard the salient regions that are deviate from the low
dimensional subspace as noises or errors, i.e., matrix E is sparse. The relation
between low-rank-sparsity and saliency is consistent with the fact that only the
distinctive sensory information is selected for further processing in a human
vision system. In summary, we incorporate two criteria to solve the Eq. 2, i.e.,
the low rank constraint for the background regions and the sparsity constraint
for the salient regions. Therefore, the saliency detection can be cast as a sparse
matrix recovery problem. Fortunately, the recently established robust principle
component analysis (RPCA) technique [23] may fit well to the saliency detection
problem. For matrix X = [X1, X2, . . . , Xd] with each column representing a
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corresponding saliency detection method, RPCA is appropriate to efficiently and
exactly recover the sparse matrix E by solving a tractable optimization problem:

min
A,E

||A||∗ + λ||E||1

s.t.X = A+E
(3)

where || · ||∗ denotes the nuclear norm (sum of the singular values of a matrix),
|| · ||1 is the ℓ1-norm and parameter λ > 0 balances the effects between rank and
sparsity. In our implementation, we set λ = 0.06. Note that, problem (3) is a
convex optimization problem. Recent theoretic analysis indicates that there are
various algorithms can be used to recover the sparse matrix E in high probability
[23][29]. Here, we apply the exact ALM method [29] to extract the sparse matrix
E.

As the minimization of the ℓ1-norm encourages the columns of E to be zero,
i.e., the columns of E are sparse, it fits well to our visual saliency learning prob-
lem. Naturally, the sparse matrix E measures the contribution of each individual
saliency method and detects satisfactory visual saliency. For a row corresponding
to the i− th super-pixel, larger element implies that the corresponding saliency
detection method made a greater contribution in terms of aggregation. That is,
in the saliency aggregation process, our model learned a set of combinational
coefficients for each super-pixel rather than simply combining the saliency re-
sponses through weighted averaging.

(a) (b)

(d) (e) (f)

(c)

(g)

Fig. 3. Illustration on our saliency learning. (a) input image, (b) over-segmentation re-
sult by mean-shift, (c) ground truth, (d) saliency aggregation result using pre-defined
function [12], (e) sparse coding result [21], which only highlights some edges, (f) de-
tected saliency by LR[15] without high-level prior interaction, better than (e), but has
some high saliency values in the background, (g) saliency by our model, which is better
than others.

Let E∗ be the optimal solution (with respect to E) to optimization problem
(3). To obtain a saliency value for the super-pixel Pi, we only need a following
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step to quantify the response of the obtained sparse matrix E∗:

S(Pi) = ||E∗(i, :)||1 =
d∑

j=1

|E∗(i, j)| (4)

Here, ||E∗(i, :)||1 is the ℓ1-norm of the i− th row of E∗. Larger (smaller) magni-
tude of S(Pi) implies that the super-pixel Pi is more salient (non-salient), then
we assign a higher (lower) value to it. In this way, the final saliency map is ac-
cordingly generated. Fig. 3(g) presents our saliency aggregation result and shows
that our model outperforms others.

4 Experiments

4.1 Experimental Setup

Data Sets and Evaluation Metrics In order to comprehensively evaluate the
performance of our proposed method, we conducted extensive experiments on
four benchmark datasets. The first one is ASD dataset provided by Achanta et
al. [9], which contains 1000 images with accurate human-marked labels for salient
objects. The second one is the SED1 dataset [30] with 100 images of a single
salient object. The third one is the SED2 dataset [30] which contains 100 images
of two salient objects. Both SED1 and SED2 are with ground truths labeled by
three different users. The SOD dataset [31] contains 300 images, which is based
on Berkeley segmentation dataset. The fifth one is the PASCAL-1500 dataset
[19] in which many images contain multiple objects with various locations and
scales, and highly cluttered background. This dataset is first used for image
segmentation evaluation [34]. Both SOD dataset and PASCAL-1500 dataset are
the most challenging ones for saliency detection.

To evaluate the quantitative performance of different methods, in this paper
we adopt three metrics including two popular ones precision recall (PR) curve
and F-measure, and the newly presented VOC score [35]. Specifically, the PR
curve is obtained by binarizing the saliency map according to different fixed
thresholds ranging from 0 to 255. At each value of the threshold, the precision
and recall are computed. The F-measure is the overall performance measurement
computed by the weighted harmonic of precision and recall, which defined as
F = ((β2 + 1)P ∗ R)/(β2P + R) (P=precision, R=recall). Here, precision and
recall are obtained by binarizing the saliency map by an adaptive threshold that
is twice the overall mean saliency value of the entire image. We set β2 = 0.3 which
is the same as in [9][11][15]. The VOC score is defined as V OC = (S∩G)/(S∪G),
where S is the object segmentation result obtained by binarizing the saliency
map using the same adaptive threshold as in the computation of F-measure, and
G is the ground-truth.

4.2 Quantitative Evaluations

We first compared the performance of our method with seven used individual
saliency detection methods, i.e., DS [16], AMC [18], GBMR [33], SLR [19], HS



10 Junxia Li, Jundi Ding, Jian Yang

[17], PCAS [20] and GC [32]. In addition, we also compared our method with
other five classical approaches, including FT [9], HC [11], LC [36] RC [11] and SR
[27]. Most of them were presented recently or have a high citation rate. Note that,
SLR is the extension of the LR [15] which also uses idea of employing the low-rank
matrix recovery for saliency detection, so here we are no longer report the results
of LR. And, theoretically, a comparison with the related approach, namely the
saliency aggregation method proposed by L. Mai et al. [13] is necessary. However,
we could not find the authors’ implementation.
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Fig. 4. Precision recall curves of all the twelve methods on the five datasets. Clearly,
our approach obtains a better PR performance than the other approaches.

Fig. 4 shows the PR carves with fixed thresholds of all the above methods on
the five datasets, which demonstrate that our method achieves the consistent and
favorable performance against the other competing approaches. From the Fig. 5,
it is observed that our proposed approach achieves the best F-measure perfor-
mance. Further, Fig. 6 presents the corresponding VOC scores of all the twelve
approaches. It can be seen from the bar graphs, our model obtains the highest
VOC scores over the five datasets. Overall, our approach consistency outperforms
each individual saliency detection approach and state-of-the-art methods.

4.3 Visual Comparison

Fig. 7 presents some results of our method with the seven selected individual
saliency detection methods. All of these images are from the four datasets ASD,
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Fig. 5. Average precision, recall and F-measure of all the twelve approaches over the
five datasets. Our method achieves the best precision, recall and F-measure.
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Our approach achieves the highest VOC scores over the five datasets.
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SOD, SED1, SED2. Visually, these images are simple, however, most of them
are with cluttered object or background. In the individual saliency maps, some
salient regions are not pop not from the background, especially for the images
which come from the SED2 dataset. And, the results shown in Fig. 7 (h), some
parts of background pixels or regions also stand out simultaneously with the
object regions. Compared with the ground truth shown in Fig. 7 (j), we can
clearly see that our approach consistently outperforms each individual saliency
detection method. This confirms that our model can effectively integrate the
results of these methods. More comparison results on the PASCAL-1500 dataset
are shown in Fig. 8.

(a) Image (b) DS (c) AMC (d) GBMR (e) SLR (f) HS (g) PCAS (h) GC (i) Ours (j) GT

Fig. 7. Examples of saliency learning on the four datasets: ASD (rows 1-2), SOD (rows
3-4), SED1 (rows 5-6), and SED2 (rows 7-8). Given an input image (a), we conduct
some saliency detection methods and obtain corresponding individual saliency maps
(b)-(h), (i) shows the saliency map produced by our model. Compared with the ground
truth (j), our model achieved best performance visually.

In addition, some saliency maps of the evaluated methods are shown in Fig.9.
We note that the proposed method can uniformly highlight the salient regions
and preserve object boundaries well than the other approaches.

4.4 Limitations

Up until now, we have evaluated the effectiveness of our model which can con-
sistently improve the performance of each individual saliency detection method.
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(a) Image (b) DS (c) AMC (d) GBMR (e) HS (f) SLR (g) PCAS (h) GC (i) Ours (j) GT

Fig. 8. More comparison results on the PASCAL-1500 dataset. Compared with the
ground truth (j), our model achieved best performance visually.
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(a) Input (b) FT (c) SR (d) LC (e) HC (f) RC (g) Ours

Fig. 9. Visual comparisons between five classical methods and our proposed approach.

However, some difficult images are still challenging for our model as well as other
state-of-the-art saliency models. As shown in Fig. 10, most of the saliency mod-
els fail to identify the salient regions for an image. In this case, the advantages
of some saliency maps are not learned into the low rank matrix recovery based
framework to help the final saliency combination.

(a) Image (b) GT (c) DS (d) AMC (e) GBMR (f) HS (g) SLR (h) PCAS (i) GC (j) Ours

Fig. 10. Failure cases. The advantages of some saliency maps are not learned into our
framework to help the final saliency combination.

5 Conclusions and Future Work

In this paper, we propose a saliency learning model for saliency aggregation
that integrates saliency maps produced by multiple saliency detection methods.
Specifically, we cast the saliency detection as a sparsity pursuit problem. Our
method provides a robust way to combine individual saliency detection methods
into a more powerful one. Experimental results prove that our proposed approach
performs better than the individual saliency detection methods and outperforms
the state-of-the-art approaches.

With the development of saliency detection technology, we believe that our
method can benefit from the forthcoming saliency methods. In the future, we
plan to investigate a strategy to learn which method can improve the perfor-
mance of our aggregation model. Furthermore, we will focus on how to overcome
the failure of our method and how to improve its speed.
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